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Solving ordinary differential equations

Solutions from the Maxima package can contain the three constants _C,
_K1 , and _K2 where the underscore is used to distinguish them from
symbolic variables that the user might have used. You can substitute
values for them, and make them into accessible usable symbolic variables,
for example withvar("_C").
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Commands:

@ desolve - Compute the general solution to a 1st or 2nd order ODE via
Maxima
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Commands:

@ desolve - Compute the general solution to a 1st or 2nd order ODE via
Maxima

@ desolve_laplace - Solve an ODE using Laplace transforms via Maxima.
Initial conditions are optional

@ desolve_rk4 - Solve numerically IVP for one first order equation,
return list of points or plot.
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a table.
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Commands:

desolve - Compute the general solution to a 1st or 2nd order ODE via
Maxima

desolve_laplace - Solve an ODE using Laplace transforms via Maxima.
Initial conditions are optional

desolve_rk4 - Solve numerically IVP for one first order equation,
return list of points or plot.

eulers_method - Approximate solution to a 1st order DE, presented as
a table.

desolve_system - Solve any size system of 1st order odes using
Maxima. Initial conditions are optional

desolve_system _rk4 - Solve numerically IVP for system of first order
equations, return list of points.
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Commands:

desolve - Compute the general solution to a 1st or 2nd order ODE via
Maxima

desolve_laplace - Solve an ODE using Laplace transforms via Maxima.
Initial conditions are optional

desolve_rk4 - Solve numerically IVP for one first order equation,
return list of points or plot.

eulers_method - Approximate solution to a 1st order DE, presented as
a table.

desolve_system - Solve any size system of 1st order odes using
Maxima. Initial conditions are optional

desolve_system _rk4 - Solve numerically IVP for system of first order
equations, return list of points.

eulers_method_2x2 - Approximate solution to a 1st order system of
DEs, presented as a table.
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sage.calculus.desolvers.desolve(de, dvar, ics=None, ivar=None,
show_method=False,contrib_ode=False)

Solves a 1st or 2nd order linear ODE via maxima. Including IVP and BVP.
INPUT:

e de - an expression or equation representing the ODE
e dvar - the dependent variable (hereafter called v)
e ics - (optional) the initial or boundary conditions
o for afirst-order equation, specify the initial x and y
o for a second-order equation, specify the initial x, y, and dy/dx, i.e.
write [X0,y(X0),y'(X0)]
o for a second-order boundary solution, specify initial and
final x and y boundary conditions, i.e. write [X0,y(X0),X1,y(X1)].
o gives an error if the solution is not SymbolicEquation (as happens for
example for a Clairaut equation)
e ivar - (optional) the independent variable (hereafter called x), which must
be specified if there is more than one independent variable in the equation.
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e show method -  (optional) if true, then Sage returns
pair [solution, method], Where method is the string describing the
metho

« d which has been used to get a solution (Maxima uses the following order
for first order equations: linear, separable, exact (including exact with
integrating factor), homogeneous, bernoulli, generalized homogeneous) -
use carefully in class, see below for the example of the equation which is
separable but this property is not recognized by Maxima and the equation
is solved as exact.

e contrib ode - (optional) if true, desolve allows to solve Clairaut,
Lagrange, Riccati and some other equations. This may take a long time and
is thus turned off by default. Initial conditions can be used only if the result
is one SymbolicEquation (does not contain a singular solution, for example)
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sage: x = var ('2)
sage: y = function ('Y, x)

sage: f = desolve(diff(y,x) + vy -1, vy, 1
cs=[10,21),; £

(e”10 + e™x)*e” (—-X)

sage: de = diff(y,x,2) - y == X

sage: desolve(de, vy)

_K2*e” (-x) + Kl*e"x - X

sage: f = desolve(de, vy, [10,2,1]); £
-x + 7*e”(x - 10) + 5*e”(-x + 10)
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sage: desolve (diff (y,x) "2+x*diff (y,x) -
y==0,y,contrib ode=True, show _method=True)

[[y(x) == C*"2 + C*x, y(x) == -1/4*x"2], 'clairault']

sage: de = diff(y,x,2) + y == 0

sage: desolve (de, vy)

_K2*cos (x) + Kl*sin(x)

sage: desolve(de, vy, [0,1,pi/2,41])

cos (x) + 4*sin(x)

sage: desolve (y*diff (y,x)+sin(x)==0,y)
-1/2*y(x)"2 == C - cos(x)
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sage: desolve(diff (y,x)*sin(y) == cos(x),V)

-cos(y(x)) == C + sin(x)

sage: desolve(diff (y,x)*sin(y) == cos(x),y,show method=True)
[-cos(y(x)) == C + sin(x), 'separable']

sage: desolve (diff (y,x)*sin(y) == cos(x),y,[pi/2,1])

-cos (y(x)) == -cos(l) + sin(x) -1

sage: a,b,c,n=var('a b ¢ n')

sage:

desolve (x"2*diff (y, x)==at+b*x"n+c*x"2*y"2,y,ivar=x,contrib ode=True)
[[y(x) == 0, (b*x"(n - 2) + a/x"2)*c"2*u == 0]]

sage:

desolve (x"2*diff (y,x)==atb*x"n+c*x"2*y"2,y,ivar=x,contrib ode=True, show
~method=True)

[[[y(x) == 0, (b*x"(n - 2) + a/x"2)*c”2*u == 0]], 'riccati']
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sage: desolve(diff(y,x)+(y) == cos(x ),y)
1/2* ((cos(x) + sin(x))*e”x + 2* C)*e”(-x)
sage: desolve(diff (y,x)+(y) == cos( x) ,y,show method=True)
[1/2* ((cos (x) + sin(x))*e”x + 2* C)*e”(-x), 'linear']
sage: desolve(diff(y,x)+(y) == cos(x),vy,[0,1])
1/2* (cos (X) *e™x + e”x*sin(x) + 1)*e”(-x)
sage: desolve (x"2*diff (y,x,x)+x*diff (y,x)+(x"2-4)*y==0,vy)
_Kl*bessel J(2, x) + K2*bessel Y(2, x)
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sage.calculus.desolvers. desolve_laplace(de, dvar, ics=None, ivar=N
one)
Solve an ODE using Laplace transforms. Initial conditions are optional.

INPUT:

e de - a lambda expression representing the ODE (eg, de = diff(y,x,2) ==
diff(y,x)+sin(x))

e dvar - the dependent variable (eg y)

e ivar - (optional) the independent variable (hereafter called x), which must
be specified if there is more than one independent variable in the equation.

e ics - alist of numbers representing initial conditions, (eg, f(0)=1, f(0)=2 is
ics =[0,1,2])

OUTPUT:

Solution of the ODE as symbolic expression
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sage: u=function('u', x)

sage: eq = diff(u,x) - exp(-x) - u == 0
sage: desolve laplace(eg,u)

1/2*(2*u(0) + 1)*e”x - 1/2*%e” (-x)

sage: desolve laplace(eq,u,ics=[0,3])
-1/2*e”(-x) + 7/2*e”x
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sage: f=function('f', x)

sage: eq = diff(f,x) + £ == 0
sage: desolve laplace(eq,f, [0,1])
e’ (-x)

sage: x = var('x")

sage: f = function('f', x)

sage: de = diff(f,x,x) - 2*diff(f,x) + £
sage: desolve laplace (de, f)

-x*e”x*f (0) + x*e”x*D[0] (f) (0) + e”x*f (0)
sage: desolve laplace(de, f,ics=[0,1,2])
X*e"x + e’x
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sage.calculus.desolvers.desolve rk4 (de, dvar, ics=None, i
var=None, end_points=None, step=0.1,output="list', **kwds)

Solve numerically one first-order ordinary differential equation. See
also ode_solver.

INPUT:

input is similar to desolve command. The differential equation can be written in a
form close to the plot_slope_field or desolve command

e Variant 1 (function in two variables)
o de - right hand side, i.e. the function f(X,y) from ODE y'=f(X,y)
o dvar - dependent variable (symbolic variable declared by var)
« Variant 2 (symbolic equation)
o de - equation, including term with diff (y, x)
o dvar - dependent variable (declared as function of independent
variable)
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o Other parameters

o

OUTPUT:

ivar - should be specified, if there are more variables or if the
equation is autonomous
ics - initial conditions in the form [x0,y0]
end points - the end points of the interval
= if end_points is a or [a], we integrate on between min(ics[0],a)
and max(ics[0],a)
= if end_points is None, we use end_points=ics[0]+10
= if end_points is [a,b] we integrate on between min(ics[0],a)
and max(ics[0],b)
step - (optional, default:0.1) the length of the step (positive number)
output - (optional, default: ‘list’) one of ‘list’, ‘plot’, ‘slope_field’
(graph of the solution with slope field)

Return a list of points, or plot produced by list_plot, optionally with slope

field.
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sage: x,y=var('x y')
sage: desolve rkd4(x*y*(2-y),y,ics=[0,1],end points=1,step=0.5)
[(to, 11,

[0.5, 1.12419127424558], [1.0, 1.461590162288825]]
sage: y=function('y',x)

sage: desolve rk4 (diff (y,x)+y* (y-1)
end points=0)

x-2,y,ics=[1,1],step=0.5,
[[0.0, 8.904257108962112], [0.5,

1.909327945361535], [1, 11]
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sage.calculus.desolvers.desolve rk4 determine
_bounds(ics, end_points=None)
Used to determine bounds for numerical integration.

« If end_points is None, the interval for integration is from ics[0] to ics[0]+10
« If end_points is a or [a], the interval for integration is from min(ics[0],a) to
max(ics[0],a)

« If end_points is [a,b], the interval for integration is from min(ics[0],a) to
max(ics[0],b)
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sage: from sage.calculus.desolvers import desolve rk4 determine bounds
sage: desolve rk4 determine bounds ([0,2],1)

(0, 1)

sage: desolve rk4 determine bounds ([0,2])

(0, 10)

sage: desolve rk4 determine bounds ([0,2], [-2])

(=2, 0)

sage: desolve rk4 determine bounds ([0,2], [-2,4])

(=2, 4)
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sage.calculus.desolvers.eulers meth
od(f, x0, y0, h, x1, algorithm="table’)
This implements Euler's method for finding numerically the solution of the 1st order
ODE y' = f(x,vy),y(a)=c. The “x” column of the table increments
from x0 to x1 by h (so (x1-x0) /h must be an integer). In the “y” column, the new

y-value equals the old y-value plus the corresponding entry in the last column.

For pedagogical purposes only.
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sage: x,y = PolynomialRing(QQ,2,"xy") .gens ()
sage: eulers method(5*x+y-5,0,1,1/2,1)

x y h*f (%, y)
0 1 -2

1/2 -1 -7/4
1 -11/4 -11/8

sage: x,y = PolynomialRing(QQ,2,"xy") .gens ()
sage: eulers method(5*x+y-5,0,1,1/2,1,algorithm="none")
(o, 11, (1/2, -11, 11, -11/41, [3/2, -33/8]]
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sage.calculus.desolvers.desolve_system(des, va
rs, ics=None, ivar=None)
Solve any size system of 1st order ODE’s. Initial conditions are optional.

Onedimensional systems are passed to desolve laplace().
INPUT:

e des - list of ODEs

e vars - list of dependent variables

e ics - (optional) list of initial values for ivar and vars. If ics is defined, it should
provide initial conditions for each variable, otherwise an exception would be
raised.

e ivar - (optional) the independent variable, which must be specified if there
is more than one independent variable in the equation.
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sage: t = var('t")

sage: x = function('x', t)

sage: y = functlon('y', t)

sage: del = diff(x,t) + vy -1 =20
sage: de2 = dlff( t) - x +1 ==20
sage: desolveisystem([del, de2], [x,v])

[x(t) == (x(0) - 1)*cos(t) - (y(0) - 1)*sin(t) + 1,
y(t) == (y(0) - 1)*cos(t) + (x(0) - 1)*sin(t) + 1]
sage: sol = desolve system([del, de2], [x,y], ics=[0,1,2]); sol

[x(t) == -sin(t) + 1, y(t) == cos(t) + 1]
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sage: t = var('t'")

sage: x = function('x'

)

X t
sage: y = functlon('y', t)
sage: del = diff(x,t) + vy -1 ==20
sage: de2 = diff(y,t) - x + 1 == 0
sage: des = [del, de2]
sage: ics = [0,1,-1]
sage: vars = [x,V]
sage: sol = desolve system(des, vars, ics); sol
[x(t) == 2*sin(t) + 1, y(t) == -2*cos(t) + 1]
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sage.calculus.desolvers. desolve_system_r
k4(des, vars, ics=None, ivar=None, end_points=None,ste
p=0.1)
Solve numerically a system of first-order ordinary diffetrential equations using the
4th order Runge-Kutta method. Wrapper for Maxima command rk. See
also ode_solver.

INPUT:
input is similar to desolve_system and desolve_rk4 commands

e des - right hand sides of the system

e vars - dependent variables

e ivar - (optional) should be specified, if there are more variables or if the
equation is autonomous and the independent variable is missing

e ics - initial conditions in the form [x0,y01,y02,y03,....]
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e end points - the end points of the interval
o if end_points is a or [a], we integrate on between min(ics[0],a) and
max(ics[0],a)
o if end_points is None, we use end_points=ics[0]+10
o if end_points is [a,b] we integrate on between min(ics[0],a) and
max(ics[0],b)
e step — (optional, default: 0.1) the length of the step

OUTPUT:

Return a list of points.

Solving ordinary differential equations and Tz December 16, 2015 24 /29



t=var('t')

x=function('x",t)

y=function('y',t)

t,x,y = PolynomialRing (QQ, 3, "txy").gens()

desolve_system_rk4([x*( 1-y), -y*( x-1)], [x,y], ics=[0,0.5,2], ivar=t, end_points=10,step=0.5)

[[0, ©.500000000000000, 2],

, 0.2592749737668782, 2.731931223766878],

, 0.08381181869088677, 4.159831105800261],

, 0.03036496486737937, 6.749428008461739],

, 0.1140108761050079, 11.18996636203008],

, 3.726275194583882, 21.9842955659135],

, -38058.46123938399, -38028.36403392813],

, -2.39313067749154e+64, -2.39313067749154e+64]]
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sage.calculus.desolvers. eulers_m
ethod 2x2(f, g, t0, x0, y0, h, t1, algorithm
="table’)
This implements Euler’'s method for finding numerically the solution of the 1st order
system of two ODEs

x' = f£(t, x, yv), x(t0)=x0.

y' = gl(t, %, y), y(t0)=y0.

The “t” column of the table increments from to to t1 by h (so fracti—toh must be an
integer). In the “x” column, the new x-value equals the old x-value plus the
corresponding entry in the next (third) column. In the “y” column, the new y-value
equals the old y-value plus the corresponding entry in the next (last) column.

For pedagogical purposes only.
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sage: t, x, y = PolynomialRing(QQ,3,"txy") .gens ()

sage: f = xt+y+t; g = x-y
sage: eulers method 2x2(f,g, 0, 0, 0, 1/3, 1,algorithm="none"
rco, o, o1, /3, o, o1, [(2/3, 1/9, 01, I[1, 10/27, 1/271, [4/3, 68/81,
4/271]
sage: eulers_method 2x2(f,g, 0, 0, 0, 1/3, 1)
& x h*f (t,x,y) v
h*g(t,x,y)
0 0 0 0
0
1/3 0 1/9 0
0
2/3 1/9 7/27 0
1/27
1 10/27 38/81 1/27
1/9
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show(taylor(e~x,x,2,5))

1 1 1 1
130 (z —2)° + ) (z —2)% + 3 (z—2)% + 5 (z —2)%° + (z — 2)é® + &

show(taylor(sin(x),x,0,8))
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